US 9,213,807 B2

11

(e.g., requests for instructions from portions of memory allo-
cated for storing data).

Referring to FIG. 8, in other embodiments of the present
invention, the selector 50 is also implemented in hardware,
and would likely be located in the same place as the hardware
decoder 60. The hardware instruction selector 50 stores the
base addresses of the instruction streams that were loaded
into memory and includes some logic to determine when to
switch between instruction streams (e.g., a hardware timer or
an instruction counter).

In one embodiment of the present invention an FPGA
configured to implement the selector 50 is placed between the
CPU 10 and memory 30. The FPGA includes registers to store
the addresses of the different instruction streams 32 stored in
memory 30. When a request to read an instruction is received
from the CPU 10, the selector 50 translates the read instruc-
tion into a request to read instructions from the selected
stream by modifying the memory address to be read in accor-
dance with the address of the stream stored in the registers.
The selector would then forward that read on to memory 30 to
read the currently selected stream.

In embodiments in which encoded instruction streams are
used, the FPGA further includes registers for storing the
encoding keys corresponding to the instruction streams and a
decoder 60 configured to decode, using the stored encoding
keys, the instruction received from the memory 30 before the
instruction is sent to the CPU 10.

In other embodiments, the registers, the selector 50, and the
decoder 60 are integrated into a CPU or a memory controller
and configured to function in a substantially similar way,
wherein the selector 50 is configured to intercept accesses to
memory to be sent over the bus by redirecting those requests
to one of the instruction streams.

Although various components of the selector 50 and the
decoder 60 are described herein as being implemented in
software or hardware, one of skill in the art would understand
that various components and functionality could be imple-
mented in software, hardware, firmware, and combinations
thereof.

The following discussion provides a mathematical and
experimental analysis of the effectiveness of synthetic pro-
cessing diversity using multiple instruction sets as described
above.

Generally, the likelihood of success of an attack decreases
as the number of architectures (or instruction sets) increases.
In a system in which an architecture is randomly selected
from a plurality of architectures at application startup or when
the machine is booted and under conditions in which the
attacker knows the set of all possible architectures that the
system could select from, the average number of attempts
until a successful breach is equal to the number of architec-
tures. As such, the likelihood of a successful attack is the
inversely proportional to the number of architectures. Math-
ematically, the inverse relationship corresponds to a geomet-
ric distribution because each of the attack attempts can be
viewed as a Bernoulli trial.

Given that x is the attempt the attack will be successful and
p is the probability of success of an attack (fixed for a given set
of architectures):

x=geometric(p) (D

As X is geometric, the probability that the k™ trial is suc-
cessful is given as:

Pa=h)=(1-p)"!xp @

10

15

20

25

30

35

40

45

50

55

60

65

12

In addition, the expected value of a geometric distribution
is given as:

B =+ =
p

However, p is known (as discussed above, p=# of architec-
tures™, so equation (3) reduces to:

1 . (€3]
T =# of architectures

EX)= —/——F——
of architectures™

To test this hypothesis, code injection attacks were per-
formed against a virtual machine running within QEMU. In
the experiments, the virtual machine was configured to select
one of a plurality of unique architectures for each run. FIG. 9
plots these experimental results as the number of attempts
until the first successful attack against the number of unique
architectures in the virtual machine.

The graph shown in FIG. 9 agrees with what would be
predicted by the results of the statistical analysis, as given in
equations (2) and (5). However, these numbers assume that no
action is taken by the system operator when these attacks fail.
In embodiments of the present invention, when an attack fails,
an invalid instruction alert can be displayed to the system
operator (e.g., in an alert sent as a message popup on a display,
as a notification on a mobile device, as an email alert, etc.) if
the watchdog process detects an attack. Given the severity of
instruction-level errors it is likely that a system operator (or
security monitoring software/hardware) would recognize the
incoming attacks and respond. In addition, the watchdog
process may be configured to take preventative measures
(e.g., lock down the system and/or prevent access to the
system) after N unsuccessful attacks. As such, the probability
that an attack is prevented can be expressed as:

ul ©)
P(Attack prevented) =1 — Z P(x=1)
0

Equation (6) is using the geometric probably for each trial
from (2). The watchdog approach was implemented in the
experimental system for a number of 2 up to 47 architectures,
with 25 runs experimental runs per data point and the results
of the experiments are shown in FIG. 10.

FIG. 10 illustrates the measured probability of preventing
attack using a watchdog process for a given number of archi-
tectures as determined by from the watchdog runs. Once the
number of architectures reaches 30, the odds for successfully
stopping an attack begin to plateau at around 80% and addi-
tional architectures only marginally increase that percentage.
The statistical analysis assumes a worst-case scenario; the
attacker is aware of the set of architectures that could possibly
be run, and that attack payload that will be used only needs to
run in a single architecture.

However, in other embodiments of the present invention in
which the architecture being executed switched during attack
payload execution (e.g., when using multiple physical or
synthetic architectures), then the attacker would also need to
be aware of the change and construct the payload accordingly
(e.g., such that the instruction set architecture of the injected

